Supervised: a ML model trains on a dataset with all data in the set labeled by a human at some point as an instance or not an instance of the property you’re training the dataset to recognize.

Unsupervised: a ML model is handed a dataset without explicit instructions on what to do with it. The training dataset is a collection of examples without a specific desired outcome or correct answer. The neural network then attempts to automatically find structure in the data by extracting useful features and analyzing its structure.  Categorization techniques for finding correlation regression techniques are the best examples of this.

Semi-Supervised: Semi-supervised learning is a training dataset with both labeled and unlabeled data. This method is particularly useful when extracting relevant features from the data is difficult, and labeling examples is a time-intensive task for experts.  Optimizing which features are relevant and dropping out the ones that aren’t is a good example of this.

Reinforcement: In this kind of machine learning, AI agents are attempting to find the optimal way to accomplish a particular goal, or improve performance on a specific task. As the agent takes action that goes toward the goal, it receives a reward. The overall aim: predict the best next step to take to earn the biggest final reward.

Deep Q-Learning is a combination of reinforcement learning with semi-supervised learning using neural networks to predict the next best move and reinforcement to adjust the neural weights.  

Nueral nets can be trained in the sense that the properties of the neurons are adjusted using supervicsed, unsupersvices, semissupervised, and reivncforcement learning methods. When the neurons are trained they can perform predictions (either calssifying something or predicting a numeric value for something).

Batches and Gradients:
Batch and Online Backpropagation
How often should the weights of a neural network be updated? Gradients can be calculated for a training set element. These gradients can also be summed together into batches and the weights updated once per batch.

Online Training - Update the weights based on gradients calculated from a single training set element.
Batch Training - Update the weights based on the sum of the gradients over all training set elements.
Batch Size - Update the weights based on the sum of some batch size of training set elements.
Mini-Batch Training - The same as batch size, but with a very small batch size. Mini-batches are very popular and they are often in the 32-64 element range.
Because the batch size is smaller than the complete training set size, it may take several batches to make it completely through the training set.

Step/Iteration - The number of batches that were processed.
Epoch - The number of times the complete training set was processed.


Batch Size — The number of training examples in one forward/backward pass. The higher the batch size, the more memory space you’ll need.

Training Epochs — It is the number of times that the model is exposed to the training dataset.

One epoch = one forward pass and one backward pass of all the training examples.

Measuring error:

Loss Function/Cost Function — The loss function computes the error for a single training example. The cost function is the average of the loss functions of the entire training set.

‘mse’: for mean squared error.
‘binary_crossentropy’: for binary logarithmic loss (logloss).
‘categorical_crossentropy’: for multi-class logarithmic loss (logloss).

Model Optimizers — The optimizer is a search technique, which is used to update weights in the model.

SGD: Stochastic Gradient Descent, with support for momentum.
RMSprop: Adaptive learning rate optimization method proposed by Geoff Hinton.
Adam: Adaptive Moment Estimation (Adam) that also uses adaptive learning rates.

 forward connections. The input layer always connects to the first hidden layer. Each hidden layer always connects to the next hidden layer. The final hidden layer always connects to the output layer. This manner to connect layers is the reason that these networks are called “feedforward.” Recurrent neural networks are not so rigid, as backward connections are also allowed. A recurrent connection links a neuron in a layer to either a previous layer or the neuron itself. Most recurrent neural network architectures maintain state in the recurrent connections. Feedforward neural networks don’t maintain any state. A recurrent neural network’s state acts as a sort of short-term memory for the neural network. Consequently, a recurrent neural network will not always produce the same output for a given input.

Recurrent neural networks do not force the connections to flow only from one layer to the next, from input layer to output layer. A recurrent connection occurs when a connection is formed between a neuron and one of the following other types of neurons:

The neuron itself
A neuron on the same level
A neuron on a previous level
 r target the input neurons or the bias neurons.
The processing of recurrent connections can be challenging. Because the recurrent links create endless loops, the neural network must have some way to know when to stop. A neural network that entered an endless loop would not be useful. To prevent endless loops, we can calculate the recurrent connections with the following three approaches:

Context neurons
Calculating output over a fixed number of iterations
Calculating output until neuron output stabilizes


