1. Create Network Manager gameobject, add network manager and NMHUD components to it (note that HUD is intended only for development, a better UI must be implemented)
2. Make a player, register it with network
 var x = Input.GetAxis("Horizontal") * Time.deltaTime * 150.0f;
 var z = Input.GetAxis("Vertical") * Time.deltaTime * 3.0f;
 transform.Rotate(0, x, 0);
 transform.Translate(0, 0, z);
3. the PlayerController script is not network-aware. In the current situation, both player GameObjects have the same script attached. Both are processing the same input in each separate instance of the game. The Host and Client are aware of each other, and the NetworkManager has created a player GameObject in each instance of the game for each player, but neither player GameObject is communicating with the Host so their positions are not tracked by the NetworkManager and are therefore not being synchronized.
4. Add if(!isLocalPlayer) return check so that only the local player processes input and make the script network aware with using UnityEngine.Networking and derive from NetworkBehavior rather than MonoBehavior.
5. If we were to run the example project at this point, the player GameObjects would not stay in sync across all of the instances of the running project. Movement Input would only be processed on the local player GameObject and the position and rotation of that player GameObject would not be updated across the network. To keep the player GameObjects in sync, we need to add a NetworkTransform component to the player prefab. The player GameObject's NetworkTransform then synchronizes the position, rotation and scale of the GameObject's transform across the Server and all of the Clients.
6. Add public override void OnStartLocalPlayer()
{
 GetComponent().material.color = Color.blue;
}
7. Make Bullets and Health (transofrm for bullet spawn, prefab for bullet publically exposed (get keycode, instantiate a gameobject from the prefab var bullet = (GameObject)Instantiate.
8. void Fire()
{
 // Create the Bullet from the Bullet Prefab
 var bullet = (GameObject)Instantiate (
 bulletPrefab,
 bulletSpawn.position,
 bulletSpawn.rotation);

 // Add velocity to the bullet
 bullet.GetComponent<Rigidbody>().velocity = bullet.transform.forward * 6;

 // Destroy the bullet after 2 seconds
 Destroy(bullet, 2.0f);
}
9. We want bullets to be called (shot) by the client, but all clients aware that there are bullets there, so the actual bullet should be run (fly through the air for all clients) on the server. To do this we use a cmd attribute, which makes this a network command. [Command]

..switch to finished project...

10. Add health bar. Now we need to do two things. We need to have a variable that is player health and synced across all servers, and we need the method that is changing that variable to also be synced so that all changes to player health happen on the sever and are then synced across all clients.
11. CleintRpc and Commands (we want to know when the client dies and remove that gameobject on the server, but the local client and not the server needs to run a spawning command to restart it’s position. Client RPCs are called by the server, but then executed by the client (we don’t want the server handling things that the client could very well handle in general, or the server will grind to a halt).

